Phase Transformations in Nitinol and **Challenges for Numerical Modeling**

Kenneth E. Perry Ph.D. 579 Azalea Ave NE, Bainbridge Island, WA 98110

Paul E. Labossière, Asst. Prof. University of Washington Dept. of Mechanical Engineering Seattle, WA, 98195-2600

Materials and Processes for Medical **Devices Conference & Exposition** August 26, 2004 St. Paul Minnesota

Acknowledgments

 Idaho National Engineering and Environmental Laboratory (INEEL)

- Eric Steffler, Randy Lloyd, Keith Rozenburg, Dave Nielson, Vance Deason, Neal Boyce, Tom Walters, and Jo

Overview

- Motivation
 - Understand the mechanics of phase transformations in Nitinol
 - Improve engineering design and verification methods
- · Moiré interferometry
- Results •
 - Uniaxial tensile specimens
 - Compact tension specimens
 - (Four-point bend specimen)

Moiré Interferometry

Typical Moiré interferometry fringe pattern horizontal displacement field

Intensity = $A + B \cos(f)$

Phase-Shifted Moiré Interferometry

- Four-beam fiber optic interferometer
- Variable frequency adjustable . (120–1200 l/mm gratings)

- Phase-shifted moiré (Perry, 1993) - Enhanced noise reduction - Preserves fine spatial resolution
- Automated fringe processing Photoresist diffraction gratings
- Spin coated resist - Ronchi ruling exposure
- Optical filtering at multiple diffraction and image planes

Phase Shifting and Unwrapping $I_{ij} = A_i + B_i \cos(f_i + d_j)$ $A_i, B_i, f_i: data at each pixel$ dj: phase shifti: 1024x1024 pixelsj: 1 to 5 phase shifts

Examples of Moiré fringe patterns

at low load prior to onset of SIM transformation

Effect of specimen grating thickness elevated load, near end of plateau

Moiré with epoxy grating Moiré with photoresist grating

Uniaxial tensile specimens

Superelastic Nitinol A_t = ~20 °C Material X

- $-A_f = ~20$ °C Material X $-A_f = ~5$ °C Material Y
- Two different processing histories
- Two different pro
 Dimensions
 - Width 1.25 mm
 - Thickness 0.4 mm
 - Gage section 10mm

Moiré Interferometry Results progressive loading of uniaxial tensile specimens (Material X)

Compact tension specimens

Compact Tension Samples

- Superelastic Nitinol, A_f = 25 °C
 Longitudinal and transverse
- orientations

– Dimensions

- Notch size 500 μm
- Thickness 0.6 mm
- Width 12.54 mm

Moiré Interferometry Results intermediate load, near first evidence of SIM (199N)

Moiré Interferometry Results

Summary

- Phase transformation in Nitinol is sub grain size (<10microns) and distributed
- Lüders-type localization was seen in some uniaxial specimens, different behavior in other specimens
- Transformation around stress concentrations follows repeatable, distributed patterns
- Volume fraction of SIM increases with increasing load, even beyond the end of the plateau
- Elastic strain decreases in the transformation zone during unloading and SIM persists until near complete unloading
- No evidence of a SIM toughening mechanism, perhaps stress shielding and redistribution effects

Conclusions

- Phase-shifted Moiré is an excellent technique for studying Nitinol and enables better engineering design and verification methods
- New material models should be developed which account for the observed distributed transformation behavior
- We still have more to learn