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Material Characterization Design Application
Fracture and Fatigue – Testing to Feedback

Phase Shifted Moiré Interferometry

• Four-beam fiber optic phase shifting
portable moiré interferometer
– 1280x960 10bit resolution
– Preserves fine spatial detail (10μm)
– Carrier fringes (0 to 5+% resolvable strain)

• Diffraction gratings
– Holographic exposed photographic plate
– Thin epoxy replication method (5-20μm)
– Specular reflection, high diffraction efficiency

• Fringe pattern analysis
– Manual fringe counting, +/-0.02% strain 

precision
– Video frame rate processing

1 fringe = 1.67μm1 fringe = 1.67μm

Uniform Radial Fatigue

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2
Mean Strain [%]

A
lte

rn
at

in
g 

St
ra

in
 [%

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1 1.2
Mean Strain [%]

A
lte

rn
at

in
g 

St
ra

in
 [%

]

Safety Line 400M cycles

Possible OverStrain Damage

Alternating Strain

Expansion Strain

Mean Strain

– Red zones are areas of 
previous severe over-expansion 
strain (> 10%)

Moiré Interferometry and
Nitinol Material Characterization

Perry and Labossiere, ASTM 2005

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Strain, %

St
re

ss
, M

Pa

Beam A 

Beam B 

Beam A’ 

Beam B’ 

Image  
Plane 

Lens 

Specimen with replicated 
diffraction grating 

Fatigue and Fracture of Nitinol
Fatigue/Strength of Materials

• Kim and Miyazaki;  SMST-1997
• Tabanli, Simha and Berg; Mat. Sci. and Eng. A 1999
• Kugler and Perry; SMST-2000, Harrison and Lin; SMST-2000
• Pelton, Gong and Duerig; SMST-2003

95 /99 fa ilure line  

AA  and M id  

Iliac  

Z  

Inte rna l Iliac  

Factor of sa fe ty  

O
sc

ill
a
tin

g 
st

ra
in

 

M ean s train  

95 /99 fa ilure line  

AA  and M id  

Iliac  

Z  

Inte rna l Iliac  

Factor of sa fe ty  

O
sc

ill
a
tin

g 
st

ra
in

 

M ean s train  

counter

Big cell

off set cam 
(oscillation)

Length of follower
(over-sizing)

Initiating the crack at a high Kmax

Growing the crack at a decreased Kmax

At the Tip of a Long Crack
(M Loading)

τxy = 4.5%

4X

8X

• A Loading in linear region, 
– No transformation/wake effects
– Initiation and propagation occur in a consistent and uniform fashion

• AM and M loadings with transformation influence
– Wake effects
– Non consistent transformation zones (Sideshow Bob hairdo)
– Pinning and bifurcations from interruptions in testing

• Due to transformation/temperature coupling
• Due to microstructural obstacles

• Size effects can be resolved in the different test protocols
– Transformation zone size relative to notch and crack sizes

• Short cracks – Notch-tip fields control transformation zone size
• Long cracks – Crack tip fields control transformation zone size

• Crack initiation and growth in Nitinol is complex
– Heterogeneous phase transformation and localization
– Crack path tortuosity, deflection, pinning of the crack
– Characterize material and processing influence
– Loading rate and history effects
– Thermal sensitivity and transformation temperature coupling
– Notch geometry effects

Conclusions Ongoing Efforts

• Identification of useable material limit data and 
methodology
– Traditional threshold crack growth rates not applicable to 

medical devices
– Singular stress fields affected by transformation (LEFM does not

work!)
• Refine existing in-house material models and numerical 

algorithms based on new data and observations
• Perform additional experimentation based on what we’ve 

learned so far
• Refine specimen geometry and processing to study in 

more detail crack initiation from defects, inclusions, etc

Loading and Unloading with Transformation 
(AM Loading)

Incremental Crack Growth
N = 100k

N = 200k

da/dN= 3 x 10-9 N - 0.1229
R2 = 0.9972
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• Initiate and grow short cracks in Nitinol C(T) samples
• Characterize range of materials and processing
• Consider three primary loading conditions

– A: elastic loading and unloading of austenite phase only
– AM: both phases present, forward/reverse transformations
– M: small amplitude loading of heavily transformed material

• Test Protocol – Load Control
– Visual/interferometric crack length measurements
– Full-field displacements at Kmax, Kmin and K = 0

• Goals
– Comparison of initiating conditions and evolution 
– Data for FEA material model development suitable for fatigue

Methodology

Motivation
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Experimental Results
Finite Element Simulation
Including Plasticity

Martensite 
Transformation

Martensite Yielding

Austenite
Trasformation

P. Chowdhury, R. Ramos, 2002, 
commentary by B. Berg

• Characterize the material behavior of Nitinol for 
better design and engineering of medical implants
– Force-deformation response

• input for and validation of material models
– Fatigue and fracture material limits

• data and methodology to validate design life

Labossiere and Perry, 2003

Unconstrained cooling – Treatment B

-0.048% 0.37%

Coefficient of thermal expansion

Wrapped fringe pattern at  T = -18 C  

Full-field strain plot (above), strain value histogram (below)

-0.048% 0.37%

Thermal free recovery – Treatment A

Nitinol Material Testing
• Purpose

– Characterize the deformation behavior of nitinol
• Coupon and component scale measurements
• Monitor and control temperature
• Real-time and full-field strain measurement

• Experiment
– Materials and processing
– Load fixtures and test sample design
– Temperature measurement, control
– Phase shifted moiré interferometry

• Key results presented
– Superelastic loading and unloading 
– Two-way shape memory free recovery
– Four-point bending
– Component measurements

Component Scale Measurements

20% radial 
compression

20% radial 
compression

Why are Nitinol devices complicated?
Material

• Multiple material phases
• Localization, instability
• Moving phase boundaries
• Processing history
• Thermoelastic behavior

Boundary Conditions
Geometry

• Stress concentrations
• Large deformations
• Contact and interactions
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• Performance
– Radial force, bend stiffness, twisting

• Reliability
– Crimp, deployment, fatigue

• Difficulties with modeling
– Material Behavior, Boundary Conditions, Contact
– Fatigue and in-use integrity and stability

• Typical In-Vitro Radial Test Methods
– Flat Plate, Loop Strap, Shell, Pressured tube, Iris

• Verification of Performance Results
• Reliability

Coupled Deformation Modes
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Device Performance and Reliability
• Testing to 400M cycles with over-idealized loading 

scenarios does not adequately address stent fractures 
seen clinically

• Take a Linear Damage Model Approach and assess 
contribution of each combined loading mode:

• Testing to failure provides relevant feedback and realistic 
safety factors
– Better measurements and analysis of clinically relevant 

deformations
– Rigorous testing to provide feedback for material limit data and

components
– Comprehensive engineering methodologies based on analysis, 

testing and rational safety factors
– Assessment of impact of fractures: design tolerance
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