Nitinol FEA: Beyond the Fundamentals

Kenneth E. Perry Paul E. Labossiere ECHOBIO LLC

Outline

- Role of FEA in Design
- Nitinol Material Model Calibration
- FEA Fundamentals
- FEA Not so Fundamentals
- Producing Valid Data
- Verification of Results

Role of FEA in Design

- Gain understanding
- Explore feasibility

- Optimize a particular solution
- Evaluate safety and efficacy
- "The purpose of computing is <u>insight</u>, not <u>numbers</u>" *R. W. Hamming*

Percutaneous valve therapies, T. Feldman, TCT 2005

Implants Break!

P. Chowdhury, R. Ramos, Coronary-Stent Fracture, New England Journal of Medicine, Volume 347:581, August 22, 2002, Number 8 (Commentary courtesy of B. Berg)

General Mechanics of Materials Approach

Strain-displacement relations

 $\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$

Strain compatability

 $\varepsilon_{ij,km} + \varepsilon_{km,ij} = \varepsilon_{ik,jm} + \varepsilon_{jm,ik}$

- Stress equilibrium equations $\sigma_{ij,j} + \rho \ddot{u}_i = f_i$
- Boundary conditions
 tractions, displacements
- Equation to describe material behavior

Superelastic Behavior of Nitinol

NDC Website, www.nitinol.com

 Stress induced reverse transformation, T > Af

Shape Memory

 Thermally induced reverse transformation, T < Af

Generating Calibration Test Data

- Measurements
 - Load
 - Cross head disp.
 - Extensometer strain
 - Temperature
- Complications
 - Multi-phase material
 - Loading mode dependence
 - Temperature sensitivity
 - Large deformations
 - Anisotropy

K. Perry and P. Labossiere, ASTM 2005

"It is of no use to employ great sophistication in computing outputs if your inputs are wrong"

Material Model Approaches

- Piecewise continuous models
- Hyperelasticity models
- User Subroutines (UMATs)
 - -Generalized plasticity
 - -Multi-phase elasticity

Piecewise Linear and Hyperelasticity Models

- Traditional plasticity based approach
- Yielding with elastic unloading
- Only good for monotonic loading
- Easiest to implement

UMATS in ABAQUS

- can be used to define the mechanical constitutive behavior of a material;
- will be called at all material calculation points of elements for which the material definition includes a user-defined material behavior;
- can be used with any procedure that includes mechanical behavior;
- can use solution-dependent state variables;
- must update the stresses and solution-dependent state variables to their values at the end of the increment for which it is called;
- must provide the material Jacobian matrix, for the mechanical constitutive model;
- can be used in conjunction with user subroutine USDFLD to redefine any field variables before they are passed in (see <u>"USDFLD," Section</u> <u>25.2.39</u>); and
- is described further in <u>"User-defined mechanical material behavior,"</u> <u>Section 12.8.1</u>

HABAQUS

ABAQUS, Inc. 1080 Main Street Pawtucket, Rhode Island 02860-4847

Generalized Plasticity: Thermodynamic Description

MATERIAL MODEL VARIABLES

- Elastic modulus, austenite E_a
- Elastic modulus, martensite E_m
- Poisson's Ratios v
- Coefficient of thermal expansion α
- Martensite start temperature M_s
- Austenite finish temperature A_f
- Maximum transformation strain H
- Stress influence coefficient (A_s vs σ)
- Tanaka coefficients ρ_{a} , ρ_{m}
- Material density ρ
- Hardening parameter B
- Initial martensite volume fraction V_m
- Martensite yield stress σ_{marvld}
- Martensite yield hardening parameter B_{marhrd}

EXTERNAL STATE VARIABLES

- Transformation flag
- Transformation direction
- Martensite volume fraction
- Transformation strain tensor
- Modified effective stress
- Yielding flag
- Martensite plastic strain tensor

See for example: M.A. Qidwai and D.C. Lagoudas, Int. J. Numer. Meth. Engr., 47, (2000)

Generalized Plasticity: Uniaxial Curve Fit

$$\begin{split} & \mathsf{E}_{\mathsf{A}}, \, v_{\mathsf{A}}, \, \mathsf{E}_{\mathsf{M}}, \, v_{\mathsf{M}}, \, \varepsilon^{\mathsf{L}}, \left(\frac{\delta\sigma}{\delta \mathsf{T}}\right)_{\mathsf{L}}, \, \sigma^{\mathsf{S}}_{\mathsf{L}}, \, \sigma^{\mathsf{E}}_{\mathsf{L}} \\ & \mathsf{T}_{\mathsf{O}}, \left(\frac{\delta\sigma}{\delta \mathsf{T}}\right)_{\mathsf{U}}, \, \sigma^{\mathsf{S}}_{\mathsf{U}}, \, \sigma^{\mathsf{S}}_{\mathsf{U}}, \, \sigma^{\mathsf{S}}_{\mathsf{CL}}, \, \varepsilon^{\mathsf{L}}_{\mathsf{V}}, \, \mathsf{N}_{\mathsf{A}}, \, \mathsf{N}_{\mathsf{S1}}, \, ... \mathsf{N}_{\mathsf{SNV}} \end{split}$$

ABAQUS, Inc. 1080 Main Street Pawtucket, Rhode Island 02860-4847

Case Study: Loading and Unloading

Considerations

- 3D formulation?
- Monotonic only loading?
- Temperature dependence?
- History dependence?

Load History Dependence

 Evolution of the stress-strain behavior after multiple cycles of loading

Verification with Experimental Measurements

X-Y Gong, A.R. Pelton, T.W. Duerig, N. Rebelo and K.E. Perry, SMST 2003

K.E. Perry and P.E. Labossiere, SMST 2003

Fatigue Coupon Samples: Calibrate and Verify

C. Kugler and K. Perry, SMST 2000

X-Y Gong, T. Duerig, A. Mehta, V. Imbeni, B. Berg, Presented at Society for Experimental Mechanics 2004 Annual Meeting, elsewhere

K. Perry and P. Labossiere, ASTM 2005

History of FEA

- Term "Finite Element Method" first used in 1960 (Clough)
- First book published in 1967
- First commercial FEA CODE 1972 (MARC)
- Full-blown codes
 - ABAQUS, ANSYS, MARC
- Specialty codes (>30 structural FEAcodes)
 - Mechanica, Cosmos, Dyna, Franc etc.
- Implicit versus Explicit Formulations

FEA Fundamentals

- Element formulations
 - Element types and solution variables
 - Most common: Displacement based isoparametric formulation
- Mesh types and element density
 - Seeded outside-inside mesh approach

- Boundary conditions and sub-model symmetry/constraints
- Solvers

Element Formulations

- Linear Elements-2 nodes per edge
 - Linear geometrical and displacement description
 - Constant (triangles) or quasi-linear (squares) stress and strain description

- Quadratic Elements-3 nodes per edge
 - Quadratic geometrical and displacement description
 - Linear (triangles) or quasi-quadratic (squares) stress and strain description

Elements in Bending

- Some elements do not perform well in bending because that deformation is not well described by the element formulation
 - Linear isoparametric elements
- Element that do better in bending
 - Higher order elements (quadratic elements and up)
 - Reduced integration elements
 - Bending specific elements such as incompatible mode elements
- Example

	Element Type	# of DOF	Max Deflection
L	CST	24	0.3
	LST	30	0.99
	Lin. Brick	24	.69
	Quad. Brick	26	1.03
	Modified Bilinear	36	1.02
	Analytical	-	1.0

FEA Basic Principle

The static FEA solution (for displacement formulation) comes from:

$$\iint_{V} \mathbf{B}^{T} \mathbf{D} \mathbf{B} dV \mathbf{u} - \mathbf{P} - \iiint_{V} \mathbf{N}^{T} \mathbf{X}_{body} dV - \iint_{S} \mathbf{N}^{T} \mathbf{T}_{tract} dS = 0$$

or simply $\mathbf{K}\mathbf{u} - \mathbf{f} = 0$

and with inertial and viscous effects

$M\ddot{u} + C\dot{u} + Ku = f$

With geometric and material nonlinearities, the problem becomes much more complicated

Complications

• Nonlinear Material (ex: plasticity)

$$\mathbf{D}_{ep} = \mathbf{D} - \frac{1}{\mathbf{H}_{p} + \mathbf{n} \cdot \mathbf{D} \cdot \mathbf{m}} (\mathbf{D} \cdot \mathbf{m} \otimes \mathbf{n} \cdot \mathbf{D})$$

Large deformations

$$\mathbf{K}_{L} = \iiint_{v} \left(\mathbf{B}_{O}^{T} \mathbf{D} \mathbf{B}_{L} + \mathbf{B}_{L}^{T} \mathbf{D} \mathbf{B}_{L} + \mathbf{B}_{L}^{T} \mathbf{D} \mathbf{B}_{O} \right) dV$$

• Finite strains

$$\mathcal{E}_{x} = \frac{\partial u}{\partial x} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial v}{\partial x} \right)^{2} + \left(\frac{\partial w}{\partial x} \right)^{2} \right]$$

Producing Valid FEA Results

- Element Size and type
 - Mesh Density
- Geometry
 - Chamfer Analysis
- Boundary Conditions
 - Base model analysis
 - Expansion step optimization

Choice of Base Model

• Radial loading or complex loading (combined radial fatigue and bending, extension and torsion

Vessel interaction and flow effects

Sub Model	сри	€ _{final}
Small Model - Radial Loading (Two Strut)	15	4.3
Partial Model - Radial Loading (One Bridge)	280	4.5
Full Model with bending	2600	4.6

When Building the Model

Watch for:

- unconnected (floating) nodes or elements
- nearly coincidental nodes that are not connected
- elements with large aspect ratios
- elements with highly differing corner angles
- elements that share nodes that do not have the same dof
- midside nodes that are too curved or midside nodes too far from the correct location (ex ¼ point elements)
- shell elements with too great a curvature

When Viewing Results

Watch for:

- Unrealistic deformed shape (or exaggerated by the GUI)
- gaps do not overclose, and no interpenetration between parts

- verify reaction forces satisfy static equilibrium
- stress plots should be based on unaveraged nodal stresses (look at the "element solution" for stresses and the "nodal solution" for displacements)

FEA Not So Fundamentals

- Convergence
 - Solution Stabilization
- Nonlinearities
 - Material
 - Geometry (large deformation/finite strain)
- Boundary Conditions and Interactions
 - Contact surfaces
- User Subroutines and working with FEA codes outside of the box
 - UMATS and feedback loops

Convergence and Stabilization

- F• Patch test: necessary and sufficient
 - Displacement based boundary conditions
 - Step size effects
 - Stabilization techniques

What to do in the event of a crash!

* STATIC, DON'T PANIC

- Check your inputs
- Decrease the step size
- Monitor convergence and tolerance criteria
- Also some codes have stabilization

Abaqus Stabilize=dissipated energy fraction of the automatic damping algorithm (like running the model in JELLO)

Be patient

Convergence and Solvers

 Steps, Increments and Iterations, Oh MY! TIME INCREMENT COMPLETED 1.875E-02, FRACTION OF STEP COMPLETED 0.408 0.408 , TOTAL TIME COMPLETED STEP TIME COMPLETED 0.408 INCREMENT 14 STARTS. ATTEMPT NUMBER 1, TIME INCREMENT 2.813E-02 RSURFU: 0.197892E+01, 0.192755E+01, 1, 0.435937E+00 **EQUILIBRIUM ITERATION** 1 AVERAGE FORCE 8.486E-03 TIME AVG, FORCE 3.888E-03 LARGEST RESIDUAL FORCE -1.097E-03 AT NODE 9057 DOF 3 LARGEST INCREMENT OF DISP. -7.534E-02 AT NODE 3568 DOF 1 LARGEST CORRECTION TO DISP. 2.161E-03 AT NODE 3676 DOF 3 EQUILIBRIUM NOT ACHIEVED WITHIN TOLERANCE. FORCE 2.967E-04 TIME AVG. MOMENT AVERAGE MOMENT 1.216E-04 ALL MOMENT RESIDUALS ARE ZERO LARGEST INCREMENT OF ROTATION 4.067E-38 AT NODE 400001 DOF 5 LARGEST CORRECTION TO ROTATION -1.402E-38 AT NODE 400001 DOF 5 THE MOMENT EQUILIBRIUM RESPONSE WAS LINEAR IN THIS INCREMENT EQUILIBRIUM ITERATION 2... Tangent stiffness Initial stiffness

Contact Interactions

- Deformable contact bodies
 - Element based surfaces
 - Node based surfaces
- Rigid surface definitions
- Self Contact

Radial Expansion, Crimp and Fatigue Modeling

 Radial loading with contracting and expanding analytically defined cylinders

Verification of Results

- Perhaps a wordy slide to help accentuate the importance of verification...and a list of possible ways verification can be done...
 - Dimensional verification (displacements are consistent)
 - Radial force verification (equilibrium is satisfied)
 - Failure/reliability analysis (material characterization is correct, self consistency)

Case Study: Radial Force Measurements

- Analytically defined contracting rigid cylinder
- Loop test
- Clam shell test
- Flat Plate Squish

Clam Shell Test Simulation

Fatigue and Reliability

- For medical devices, success comes down to reliability with failure due to fatigue
- In-vitro Fatigue testing
 - Test-to-success versus Test-to-failure
- In-vitro fatigue model verification
- Results interpretation

Fatigue Limit Data

- What physical properties are needed for making failure/risk-of-failure decisions?
 - Experimental fatigue limit data with a consistent (and appropriate) fatigue coupon design
 - Borrow "typical" limit properties of NiTi

X-Y Gong, T. Duerig, A. Mehta, V. Imbeni, B. Berg, Presented at Society for Experimental Mechanics 2004 Annual Meeting

Endurance Limit Modifying Factors

$S_e = K_a K_b K_c K_d K_e K_f S_e$

- K_a surface condition factor
- K_b size factor
- K_c load factor
- K_d temperature factor
- K_e reliability factor
- K_f miscellaneous effects factor

Ex.	Reliability	Reliability Factor K _e
	.50	1
-	0.90	.897
	0.95	.868
_	0.99	.814
-	0.999	.753

Shigley, Mechanical Engineering Design, 1963

Traditional Stress-Based Approach

Modified Goodman

Intersection

$$\frac{S_a}{S_e} + \frac{S_m}{S_{ult}} = 1$$

Safety Factor $n_{f} = 1 / \left(\frac{S_{a}}{S_{e}} + \frac{S_{m}}{S_{ult}} \right)$

Mean vs. Alternating Strain Data

- Goodman-type plot of Integration point data
- Interpretation: quantitative and qualitative "hotspots" point to locations of concern

echobio

Possible OverStrain Damage

Summary of Good FEA Practices

Calibrate your model Validate your methodology and Verify your results

